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We present a study, within a mean-field approach, of the kinetics of the mixed spin-1 and spin-3/2 Ising
model Hamiltonian with bilinear and biquadratic nearest-neighbor exchange interactions and a single-ion
potential or crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. We
employ the Glauber transition rates to construct the mean-field dynamical equations. We investigate the time
dependence of average magnetizations and the quadrupole moments, and the thermal behavior of the dynamic
order parameters. From these studies, we obtain the dynamic phase transition �DPT� points and construct the
phase diagrams in three different planes. Phase diagrams contain disordered �d�, ferrimagnetic �i�, the antiqua-
drupolar or staggered �a� phases, and four coexistence or mixed phase regions, namely, the i+d, i+a, i+a
+d, and a+d, that strongly depend on interaction parameters. The system also exhibits the dynamic tricritical
behavior in most cases, the reentrant behavior in few cases.
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I. INTRODUCTION

Ferrimagnetic materials are currently the subject of a
great deal of interest due to the their possible useful proper-
ties for technological applications as well as academic re-
searches. Mixed-spin Ising systems provide good models to
investigate ferrimagnetism. One of the earliest, simplest and
as well as most extensively studied mixed spin Ising models
is the spin-1/2 and spin-1 mixed system. Equilibrium behav-
ior of this system has been extensively studied by the well-
known method in the equilibrium statistical physics �see
�1–5� and references therein�. Few works have been done for
investigating the nonequilibrium properties of the system
�6–8�.

The spin-1 and spin-3/2 mixed system has received less
attention. However, this system was used to study iron ni-
tride compounds, specifically the Monte Carlo �MC� simula-
tions were applied to study of a mixed spin-1 and spin-3/2
Ising model to investigate a characteristic feature of Fe4N
�9�. The equilibrium properties of the mixed spin-1 and spin-
3/2 Ising system were examined by various methods such as
the effective-field theory �EFT� �10�, mean-field approxima-
tion �MFA� based on Bogoliubov inequality for the Gibbs
free energy �11�, the cluster variation method with the pair
approximation �CVMPA� �12�, and the MC simulations
�9,13�. The exact formulation of the mixed spin-1 and spin-
3/2 Ising ferrimagnetic systems on the Bethe lattice using the
exact recursion equations was given in detail �14�.

While equilibrium properties of the mixed spin-1 and
spin-3/2 Ising systems have been studied by various meth-
ods, to our knowledge the nonequilibrium properties of the
systems have not been investigated. Therefore, in this work
we are going to investigate dynamical aspect of the mixed
spin-1 and spin-3/2 Ising ferromagnetic model Hamiltonian
with bilinear and biquadratic nearest-neighbor exchange in-
teractions and a single-ion potential or crystal-field interac-
tion in the presence of a time-dependent oscillating external
magnetic field. We use the Glauber-type stochastic dynamics

�15� to describe the time evolution of the system and obtain
the mean-field dynamical equations. The nature �continuous
and discontinuous� of transition is characterized by studying
the thermal behaviors of dynamic order parameters. The dy-
namic phase transition �DPT� points are obtained and the
dynamic phase diagrams are presented in three different
planes.

The organization of the remaining part of this paper is as
follows. In Sec. II, the model and its formulations, namely,
the derivation of the set of mean-field dynamic equations, are
given by using Glauber-type stochastic dynamics in the pres-
ence of a time-dependent oscillating external magnetic field.
In Sec. III, the numerical results for average order param-
eters, the DPT points and phase diagrams are studied in de-
tail. Finally, we give a summary and conclusion in Sec. IV.

II. MODEL AND FORMULATIONS

The mixed spin-1 and spin-3/2 Ising model is described as
a two-sublattice system, with spin variables �i= �1, 0 and
Si= �3 /2, �1 /2 on the sites of sublattices A and B, respec-
tively. The system has four long-range order parameters
which are introduced as follows: Two average magnetiza-
tions ��� and �S� for the A and B sublattices, respectively,
which are the excess of one orientation over the other, also
called the dipole moments. Two average quadrupole mo-
ments, �qA�, which is a linear function of average square
magnetization, i.e., �3�i

2−2�, only for the A sublattice, and
�qB�, which is a linear function of average square magneti-
zation, �Si

2−5 /4�, only for the B sublattice.
The mixed spin-1 and spin-3/2 Ising model Hamiltonian

with bilinear �J� and biquadratic �K� nearest-neighbor ex-
change interactions and a single-ion potential or crystal-field
interaction �D� in the presence of a time-dependent oscillat-
ing external magnetic field is
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H = − J�
�ij�

�i
ASj

B − K�
�ij�

�3��i
A�2 − 2���Sj

B�2 − 5/4�

− D��
i

�3��i
A�2 − 2� + �

j

��Sj
B�2 − 5/4�	

− H��
i

�i
A + �

j

Sj
B	 , �1�

where �ij� indicates a summation over all pair of nearest-
neighboring sites, and H is an oscillating magnetic field of
the form

H = H0 cos�wt� , �2�

where H0 and w=2�� are the amplitude and the angular
frequency of the oscillating field, respectively. The system is
in contact with an isothermal heat bath at absolute tempera-
ture.

Now, we apply Glauber-type stochastic dynamics to ob-
tain the mean-field dynamic equation of motion. Thus, the
system evolves according to a Glauber-type stochastic pro-
cess at a rate of 1 /� transitions per unit time. Leaving the S
spins fixed, we define PA��1 ,�2 , . . . ,�N ; t� as the probability
that the system has the �-spin configuration, �1 ,�2 , . . . ,�N,
at time t, also, by leaving the � spins fixed, we define
PB�S1 ,S2 , . . . ,SN ; t� as the probability that the system has the
S-spin configuration, S1 ,S2 , . . . ,SN, at time t. Then, we cal-
culate Wi

A��i→�i�� and Wj
B�Sj→Sj��, the probabilities per

unit time that the ith � spin changes from �i to �i� and the jth
S spin changes from Sj to Sj�, respectively.

The time dependence of this probability function is as-
sumed to be governed by the master equation which de-
scribes the interaction between spins and heat bath and can
be written as

d

dt
PA��1,�2, . . . ,�N;t� = − �

i � �
�i��i�

Wi
A��i → �i��	

�PA��1,�2, . . . ,�i, . . . �N;t�

+ �
i � �

�i��i�

Wi
A��i� → �i�

�PA��1,�2, . . . ,�i�, . . . �N;t�	 ,

�3�

where Wi
A��i→�i�� is the probability per unit time that the

ith spin changes from the value �i to �i�. Since the system is
in contact with a heat bath at absolute temperature TA, each
spin can change from the value �i to �i� with the probability
per unit time;

Wi
A��i → �i�� =

1

�

exp�− �	EA��i → �i���

�
�i�

exp�− �	EA��i → �i���
, �4�

where �=1 /kBTA, kB is the Boltzmann factor, ��i�
is the sum

over the three possible values of �i�= �1, 0, and

	EA��i → �i�� = − ��i� − �i��J�
j

Sj
B + H	 − ���i��

2 − ��i�2�

��3K�
j

��Sj
B�2 − 5/4� + 3D	 , �5�

gives the change in the energy of the system when the
�i-spin changes. The probabilities satisfy the detailed bal-
ance condition

Wi
A��i → �i��

Wi
A��i� → �i�

=
PA��1,�2, . . . ,�i�, . . . ,�N�
PA��1,�2, . . . ,�i, . . . ,�N�

, �6�

and substituting the possible values of �i, we obtain

Wi
A�1 → 0� = Wi

A�− 1 → 0� =
1

�

exp�− �y�
2 cosh��x� + exp�− �y�

,

�7a�

Wi
A�1 → − 1� = Wi

A�0 → − 1� =
1

�

exp�− �x�
2 cosh��x� + exp�− �y�

,

�7b�

Wi
A�0 → 1� = Wi

A�− 1 → 1� =
1

�

exp��x�
2 cosh��x� + exp�− �y�

,

�7c�

where x=H+J� jSj and y=3K� j��Sj�2−5 /4�+3D. Notice
that, since Wi

A��i→�i�� does not depend on the value �i, we
can therefore write Wi

A��i→�i��=Wi
A��i��, then the master

equation becomes

d

dt
PA��1,�2, . . . ,�N;t� = − �

i � �
�i��i�

Wi
A��i��	

�PA��1,�2, . . . ,�i, . . . ,�N;t�

+ �
i � �

�i��i�

Wi
A��i�

�PA��1,�2, . . . ,�i�, . . . ,�N;t�	 .

�8�

Since the sum of the probabilities is normalized to one, by
multiplying both sides of Eq. �8� by �k for mA and �3�k

2

−2� for qA and taking the average, we obtain

�
d

dt
��k� = − ��k� + 
 2 sinh��x�

2 cosh��x� + exp�− �y�� , �9�

�
d

dt
�3�k

2 − 2� = − �3�k
2 − 2� + 1 − 
 3 exp�− �y�

2 cosh��x� + exp�− �y�� .

�10�

These dynamic equations can be written in terms of a mean-
field approach and hence the set of the mean-field dynamical
equations in the presence of a time-varying field are
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�
d

dt
��� = − ��� +

2 sinh ��Jz�Sj
B� + H0 cos�wt��

2 cosh ��Jz�Sj
B� + H0 cos�wt�� + exp�− 3��Kz�Qj

B� + D��
, �11�

�
d

dt
�3�2 − 2� = − �3�2 − 2� + 1 −

3 exp�− 3��Kz�Qj
B� + D��

2 cosh ��Jz�Sj
B� + H0 cos�wt�� + exp�− 3��Kz�Qj

B� + D��
. �12�

The system evolves according to the set of these coupled differential equations given by Eqs. �11� and �12�. They can be
written in the form



d

d�
mA = − mA +

2 sinh��1/T��mB + h cos ���
2 cosh��1/T��mB + h cos ��� + exp�− 3�kqB + d �/T�

, �13�



d

d�
qA = − qA + 1 −

3 exp�− 3�kqB + d �/T�
2 cosh��1/T��mB + h cos ��� + exp�− 3�kqB + d �/T�

, �14�

where mA= ���, mB= �S�, qA��3�2−2�, qB��S2�−5 /4, �=wt, T= ��zJ�−1, h=H0 /zJ, k=K /zJ, d =D /zJ, and 
=�w.
Now assuming that the spins on sublattice A remain momentarily fixed and the spins on the sublattice B change, we obtain

the mean-field dynamical equations of mB and qB for the B sublattice with the similar calculation as before, except we take
Si= �3 /2, �1 /2 instead of �i= �1, 0 and we use �qB�= �Si

2−5 /4� instead of �qA�= �3�i
2−2�. The set of mean-field dynamical

equations for the B lattice are obtained as



d

d�
mB = − mB +

3 sinh�3

2

mA + h cos �

T
	exp
d + kqA

T
� + sinh�1

2

mA + h cos �

T
	exp
−

d + kqA

T
�

2 cosh�3

2

mA + h cos �

T
	exp
d + kqA

T
� + cosh�1

2

mA + h cos �

T
	 exp
−

d + kqA

T
� , �15�



d

d�
qB = − qB +

cosh�3

2

mA + h cos �

T
	 exp
d + kqA

T
� − cosh�1

2

mA + h cos �

T
	exp
−

d + kqA

T
�

cosh�3

2

mA + h cos �

T
	exp
d + kqA

T
� + cosh�1

2

mA + h cos �

T
	exp
−

d + kqA

T
� , �16�

where mA= ���, mB= �S�, qA��3�2−2�, qB��S2�−5 /4, �
=wt, T= ��zJ�−1, h=H0 /zJ, k=K /zJ, d =D /zJ, and 
=�w.
Hence, the set of mean-field dynamical equations of the sys-
tem are obtained. We fixed z=4 and 
=2�. In the next
section, we will give the numerical results of these equations.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Time variations of average order parameters

In order to investigate the behaviors of time variations of
order parameters, first we have to study the stationary solu-
tions of the set of coupled mean-field dynamical equations,
given in Eqs. �13�–�16�, when the parameters T, k, d , and h
are varied. The stationary solutions of these equations will be
periodic functions of � with period 2�; that is,

mA�� + 2�� = mA��� and mB�� + 2�� = mB��� ,

�17a�

qA�� + 2�� = qA��� and qB�� + 2�� = qB��� . �17b�

Moreover, they can be one of three types according to
whether they have or do not have the property

mA�� + �� = − mA��� and mB�� + �� = − mB��� ,

�18a�

qA�� + �� = − qA��� and qB�� + �� = − qB��� .

�18b�

The first type of solution satisfies both Eqs. �18a� and �18b�
is called a symmetric solution which corresponds to a disor-
dered �d� solution. In this solution, the submagnetizations mA
and mB are equal to each other �mA=mB�, and they oscillate
around zero and are delayed with respect to the external
magnetic field. On the other hand, the quadrupolar order pa-
rameters qA��� and qB��� oscillate around a nonzero value for
finite temperature and around zero for infinite temperature
since qA=qB=0 at infinite temperature by the definition of
qA=3��i

2�−2 and qB= �Sj
2�−5 /4, respectively. The second

type of solution, that does not satisfy Eqs. �18a� and �18b�, is
also called a nonsymmetric solution but this solution corre-
sponds to a ferrimagnetic �i� solution because the submagne-
tizations mA and mB are not equal each other �mA�mB�, and
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they oscillate around a nonzero value, namely, mA��� and
mB��� oscillate around �1 and �3 /2, respectively. On the
other hand, the quadrupolar order parameters qA and qB are
not equal to each other �qA�qB�, and they oscillate around a
nonzero value. In this case, the magnetization and quadrupo-
lar order parameters do not follow the external magnetic
field. The third type of solution, which satisfies Eq. �18a� but
does not satisfy Eq. �18b�, corresponds to the antiquadrupo-
lar or staggered solution �a�. In this solution, submagnetiza-
tions mA and mB are equal each other �mA=mB�, and mA���
and mB��� oscillate around zero value and are delayed re-
spect the external magnetic field. On the other hand, the qua-
drupolar order parameters qA and qB are not equal to each
other �qA�qB�, and they oscillate around a nonzero value,

namely, qA��� and qB��� oscillate around −2 and −1, respec-
tively, and they do not follow the external magnetic field.
These facts are seen explicitly by solving Eqs. �13�–�16� nu-
merically. These equations are solved by using the numerical
Adams-Moulton predictor-corrector method for a given set
of parameters and initial values and presented in Fig. 1. Fig-
ures 1�a�–1�c� represent the disordered, ferromagnetic, and
antiquadrupolar fundamental solutions or phases, respec-
tively. In addition to these fundamental phases, four coexist-
ence or mixed phases, namely, i+d, i+a, a+d, and i+a+d
mixed phases, occur in the system. The basic properties of
the fundamental and mixed phases or solutions are summa-
rized in Table I to avoid giving an unacceptable number of
figures and as well as duplications of the explanations.
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FIG. 1. Time variations of the
magnetizations �mA ,mB� and the
quadrupole moments �qA ,qB�: �a�
Exhibiting a disordered �d� phase:
k=0, d =0.25, h=1.25, and T
=0.25. �b� Exhibiting a ferrimag-
netic �i� phase: k=0, d =0.25, h
=0.5, and T=0.5. �c� Exhibiting
an antiquadrupolar or staggered
�a� phase: k=0.25, d =−1.0, h
=0.75, and T=0.75.
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B. Thermal behavior of dynamic order parameters

In this section, we investigate the behavior of the average
order parameters in a period or the dynamic order parameters
as a function of the reduced temperature. This investigation
leads us to obtain the dynamic phase transition �DPT� points.
The dynamic order parameters, namely, dynamic sublattice
magnetizations �MA ,MB� and dynamic sublattice quadrupole
moments �QA ,QB�, are defined as

MA =
1

2�
�

0

2�

mA���d�, MB =
1

2�
�

0

2�

mB���d� �19�

and

QA =
1

2�
�

0

2�

qA���d�, QB =
1

2�
�

0

2�

qB���d� . �20�

The behaviors of MA, MB and QA, QB as a function of the
reduced temperature for several values of k, d , and h are
obtained by solving Eqs. �19� and �20�. We solve these equa-
tions by combining the numerical methods of Adams-
Moulton predictor corrector with the Romberg integration. A
few interesting results are plotted in Figs. 2�a�–2�e� in order
to illustrate the calculation of the DPT points. In these fig-
ures, thick lines represent MA and MB, and thin line repre-
sents QA and QB. TC and Tt represent second- and first-order
phase transition temperatures, respectively. TtQ is the first-
order phase transitions for only QA and QB. Figure 2�a�
shows the behavior of MA, MB and QA, QB as a function of
the reduced temperature for k=0, d =0.25, and h=0.25. In
this figure, MA=1, MB=3 /2, QA=QB=1 at zero temperature,
and MA and MB decrease to zero continuously as the reduced
temperature increases, therefore a second-order phase transi-
tion occurs at TC=1.1750. On the other hand, QA and QB

decrease until TC, and it makes a cusp at TC and then again
decreases to zero as the reduced temperature increases, and
finally it becomes zero at infinite temperature. In this case
the dynamic phase transition is from the ferrimagnetic �i�
phase to the d phase and the solution does not depend on
initial values of MA, MB and QA, QB. Figures 2�b� and 2�c�
illustrate the thermal variations of MA, MB and QA, QB for
k=0, d =−0.3, and h=0.0625 for two different initial values;
i.e., the initial values are taken as MA=1, MB=3 /2, and
QA=QB=1 for Fig. 2�b� and MA=0, MB=1 /2, QA=−2, and
QB=−1 for Fig. 2�c�. The behavior of Fig. 2�b� is similar to
Fig. 2�a�, hence the system undergoes a second-order phase
transition from the i phase to the d phase. In Fig. 2�c�, MA
=0, MB=0 and QA=−2, QB=−1 at zero temperature, the sys-
tem undergoes two successive phase transition as the tem-
perature increases: The first one is a first-order phase transi-
tion, because discontinuously occurs for the dynamic order
parameters. The transition is from the a phase to the i phase
at TtQ=0.3150. The second one is a second-order phase tran-
sition from the i phase to the d phase similar to Figs. 2�a� and
2�b�. From Figs. 2�b� and 2�c�, one can see that we have the
i+a coexistence phase region also exists in the system, com-
pare Figs. 2�b� and 2�c�, with Fig. 3�h�. Figures 2�d� and 2�e�
show the behavior of order parameters as a function of the
reduced temperature for k=0, d =0.25, and h=1 for two dif-
ferent initial values; i.e., the initial values are taken as MA
=1, MB=3 /2, and QA=QB=1 for Fig. 2�d� and MA=0, MB
=1 /2 and QA=−2, QB=−1 for Fig. 2�e�. In Fig. 2�d�, the
system undergoes a first-order phase transition, because or-
der parameters decrease to zero discontinuously as the re-
duced temperature increases and the phase transition is from
the i phase to the d phase at Tt=0.2350. Figure 2�e� shows
that MA=0, MB=0 and QA=1, QB=1 at zero temperature but
does not undergo any phase transition and finally QA and QB
become zero at infinite temperature; hence this figure corre-
sponds to the d phase. From Figs. 2�d� and 2�e�, one can see

TABLE I. Characteristic of time variations of magnetizations �mA��� and mB���� and quadrupolar order
parameters �qA��� and qB����.

Oscillation of sublattice
magnetization

Oscillation of sublattice
quadrupole

Fundamental phases or solutions d mA=mB=0 qA�qB�0

i mA= �1,mB= �3 /2 qA�qB�0

a mA=mB=0 qA�qB
0

Coexistence phases or solutions i+d i mA= �1,mB= �3 /2 qA�qB�0

d mA=mB=0 qA�qB�0

i+a i mA= �1,mB= �3 /2 qA�qB�0

a mA=mB=0 qA�qB
0

a+d a mA=mB=0 qA�qB
0

d mA=mB=0 qA�qB�0

i+a+d i mA= �1,mB= �3 /2 qA�qB�0

a mA=mB=0 qA�qB
0

d mA=mB=0 qA�qB�0

KINETICS OF A MIXED SPIN-1 AND SPIN-3/2 ISING … PHYSICAL REVIEW E 77, 051130 �2008�

051130-5



FIG. 2. The reduced temperature dependence of the dynamic magnetizations MA and MB �the thick solid lines� and the dynamic
quadrupole moments QA and QB �the thin solid lines�. TC, and Tt are the critical or the second-order phase transition and the first-order phase
transition temperatures for MA, MB, QA, and QB, respectively, and TtQ is the first-order phase transition temperature for only QA and QB. �a�
Exhibiting a second-order phase transition from the i phase to the d phase for k=0, d =0.25, h=0.25, and the initial values of MA=1,
MB=3 /2 and QA=1, QB=1; 1.1750 is found as TC. �b� Exhibiting a second-order phase transition from the i phase to the d phase for k
=0, d =−0.3, h=0.0625, and the initial values of MA=1, MB=3 /2 and QA=1, QB=1; 0.6625 is found as TC. �c� Exhibiting two successive
phase transition, the first one is a first-order phase transition from the a phase to the i phase and the second one is a second-order phase
transition from the i phase to the d phase for k=0, d =−0.3, h=0.0625, and the initial values of MA=0, MB=1 /2 and QA=−2, QB=−1;
0.3150 and 0.6625 are found as TtQ and TC, respectively. �d� Exhibiting a first-order phase transition from the i phase to the d phase for k=0,
d =0.25, h=1.0, and the initial values of MA=1, MB=3 /2 and QA=1, QB=1; 0.2350 is found as Tt. �e� The system does not undergo any
phase transition for k=0, d =0.25, h=1.0, and the initial values of MA=0, MB=1 /2 and QA=−2, QB=−1. This figure corresponds to d phase.
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that the system exhibits the i+d coexistence phase region,
compare Figs. 2�d� and 2�e�, with Fig. 3�b�.

C. Dynamic phase diagrams

Since we have obtained the DPT points in Sec. III B, we
can now present the phase diagrams of the system. The cal-
culated phase diagrams in the �T ,h�, �k ,T�, and �d ,T� planes
are presented in Figs. 3–5, respectively for various values of
interaction parameters. In these phase diagrams, the solid
and dashed lines represent the second- and first-order phase
transition lines, respectively, and the dynamic tricritical
points is denoted by a filled circle. B, Z, TP, and QP represent
the dynamic double critical end point, zero-temperature criti-
cal point, triple point and quadruple point, respectively.

Figure 3 illustrates the dynamic phase diagrams in the
�T ,h� plane for various values k and d and eleven main
different topological types of phase diagrams are seen. From
these phase diagrams the following four interesting phenom-
ena have been observed. �1� The phase diagrams of Figs.
3�a�–3�g�, Fig. 3�i�, and Fig. 3�h� illustrate one, two, or three
tricritical points, respectively, but Figs. 3�j� and 3�k� do not
contain any tricritical point; hence in these figures all the

dynamic phase lines are only first-order lines. �2� In Fig.
3�a�, the system also exhibits a reentrant behavior, i.e., as the
temperature is lowered, the system passes from the disor-
dered �d� phase to the i+d coexistence or mixed phase, and
back to the d phase again for high values of h. For low
values of h, as the temperature is lowered, the system passes
from the disordered �d� phase to the i phase, and from the i
phase to the i+d phase, and finally back to the d phase again.
�3� The dynamic double critical end point �B�, that separates
one phase region from the other phase region, appears in the
phase diagrams of Figs. 3�e�, 3�j�, and 3�k�. �4� Figure 3�d�
exhibits a quadruple point �QP�, and Figs. 3�d�–3�f�, and
3�h�–3�j� display a triple point �TP�. We do indeed observe a
phase diagram of Fig. 3�b� very similar to that found in ear-
lier studies of the kinetic spin-1/2 Ising model �16�, the ki-
netic Blume-Capel �BC� model �17�, Blume-Emery-Grifftihs
�BEG� model �18�, the kinetic spin-3/2 Ising systems �19�, as
well as kinetics of the mixed spin-1/2 and spin-1 Ising ferri-
magnetic system �6�, but the phases other than the d phases
are different. Moreover, a phase diagram similar to Fig. 3�c�
has also been obtained in the kinetic BC �17�, kinetic BEG
�18�, and kinetic isotropic BEG model �20�, but the phases
other than the d phases are different.

FIG. 3. Phase diagrams of the mixed spin-1 and spin-3/2 Ising ferrimagnetic model in the �h ,T� plane. The disordered �d�, ferrimagnetic
�i�, antiquadrupolar or staggered �a� phase and four different coexistence regions, namely, the i+d, a+d, i+a, and i+a+d regions, are found.
Dashed and solid lines represent the first- and second-order phase transitions, respectively. The special points are the dynamic tricritical point
with filled circle, the dynamic double critical end point �B�, dynamic triple point �TP�, and dynamic quadruple point �QP�. �a� k=−0.135,
d =0, �b� k=0, d =0.25, �c� k=0, d =−0.25, �d� k=0.25, d =0.25, �e� k=0.3125, d =0.25, �f� k=0.375 d =0.25, �g� k=0.30, d =0, �h� k
=0, d =−0.30, �i� k=0, d =−0.325, �j� k=0.25, d =−0.75, �k� k=0.25, d =−1.
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We also calculate the phase diagrams in the �k ,T� and
�d ,T� planes, seen in Figs. 4 and 5, respectively. We find
seven different fundamental phase diagrams in the �k ,T�
plane and five main different topological types of phase dia-
grams in the �d ,T� plane. Since the phase diagrams in these
planes can be readily obtained from the phase diagrams in
the �T ,h� plane, especially for very high and low values of h,
we give two interesting phase diagrams in the �k ,T� plane
and one phase diagram in the �d ,T� plane in which they
cannot readily be obtained from the phase diagrams in the
�T ,h� plane. Figures 4�a� and 4�b� illustrate the phase dia-
grams in the �k ,T� plane. Figure 4�a� contains three dynamic
tricritical points, one double critical end point �B�, and one
dynamic quadruple point �QP�; the system also exhibits a
reentrant behavior, same as seen in Fig. 3�a�. In Fig. 4�b�,
one tricritical and two double critical end points �B� exists.
One cannot easily obtain these properties from the phase
diagrams in the �T ,h� plane. Figure 5 contains one dynamic
tricritical point and one zero-temperature critical point �Z�
and again the occurrence of the Z point cannot be readily
obtained from Fig. 3; however, if one examine very carefully
Fig. 3, one can see the occurrence of the Z point. We have

found a phase diagram similar to that obtained in the kinetic
spin-1 Blume-Capel model in the �d ,T� plane very recently
�21�.

IV. SUMMARY AND CONCLUSION

We have analyzed, within a mean-field approach, the sta-
tionary states of the kinetic mixed spin-1 and spin-3/2 Ising
ferrimagnetic model Hamiltonian with bilinear �J� and bi-
quadratic �K� nearest-neighbor exchange interactions and a
single-ion potential or crystal-field interaction �D� under the
presence of a time varying �sinusoidal� magnetic field �H
=H0 cos�wt��. We use a Glauber-type stochastic dynamics to
describe the time evolution of the system. First we have stud-
ied time variations of the average order parameters in order
to find the phases in the systems. Then, the behavior of the
average order parameters in a period or the dynamic order
parameters as a function of the reduced temperature �T
=kT /zJ, z is the coordination number.� and a reduced crystal-
field interaction �d � is investigated. This study leads us to
characterize the nature �continuous and discontinuous� of
transitions as well as to obtain the DPT points. Finally, the
dynamic phase diagrams are presented in the �T ,h�, �k ,T�,
and �d ,T� planes, where h=H0 /zJ, k=K /zJ, and d =D /zJ.
We have found that the behavior of the system strongly de-
pends on the values of the interaction parameters and eleven
different phase diagram topologies are obtained in the �T ,h�
plane, seven different types of phase diagrams are found in
the �k ,T� plane, and five in the�d ,T�. Since the phase dia-
grams in these planes can be readily obtained from the phase
diagrams in the �T ,h� plane, especially for very high and low
values of h, we give two interesting phase diagrams in the
�k ,T� plane and one phase diagram in the �d ,T� plane in
which they cannot be seen easily from the phase diagrams in
the �T ,h� plane. As explained in Sec. III C and seen in Figs.
3–5, the system displays very rich different types of phase
diagrams.

FIG. 5. Same as Fig. 4, but in the �d ,T� plane, obtained for k
=0 and h=1. The special points are the dynamic tricritical point
with filled circle and dynamic zero-temperature critical point �Z�.

FIG. 4. Phase diagrams of the mixed spin-1 and spin-3/2 Ising
ferrimagnetic model in the �k ,T� plane. Dashed and solid lines are
the dynamic first- and second-order phase boundaries, respectively;
The special points are the dynamic tricritical point with filled circle,
the dynamic double critical end point �B�, and the dynamic qua-
druple point �QP�. �a� d =0, h=0.25, �b� d =0, h=0.8125.
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Finally, it should be mentioned there is a strong possibil-
ity that at least some of the first-order transition lines and
also dynamic tricritical points are very likely artifacts of the
mean-field approach due to its limitations, such as the corre-
lations of spin fluctuations have not been considered. How-
ever, this study suggests that the kinetic mixed spin-1 and
spin-3/2 Ising ferrimagnetic model has an interesting dy-
namic behavior. Hence, we hope that our detailed theoretical
investigation may stimulate further work to study the non-
equilibrium or DPT in the mixed Ising model by using more

accurate techniques such as kinetic Monte Carlo �MC� simu-
lations or renormalization-group �RG� calculations.
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